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Abstract— Robots need to understand words for references
in social spaces (e.g., objects, locations, actions). Grounded
language learning systems aim to learn these words from
observing a human tutor. Teaching a robot is difficult for naive
users due to the discrepancy between the users’ mental model
and the actual state of the robot. We introduce a grounded
word-learning system with the Pepper robot which learns object
and action labels and investigate two extensions geared towards
increasing the system’s transparency. The first extension utilizes
deictic gestures (pointing and gaze) to communicate knowledge
about object names, and to further request new labels. The
second extension shows the current state of the lexicon on
the robot’s tablet. We performed a user study (n=32) to
investigate the effects of the transparency methods on learning
performance and teaching behavior. In a quantitative analysis,
we did not see a significant performance increase for the
two extensions. However, users reported higher perception of
control and perceived learning success, the better they knew the
current state of the learning system. In a qualitative analysis, we
investigated the participants’ teaching behaviors and identified
factors that inhibited the learning process. Among other things,
we found increased interactive behavior of users when the robot
displayed deictic gestures. We saw that human tutors simplified
their utterances over time to adapt to the perceived capabilities
of the robot. The tablet was most helpful for users to understand
what the robot had already learned. However, learning was
impaired in all conditions, when the human input substantially
deviated from the form required by the learning system.

I. INTRODUCTION

Robots are moving into environments where they need to
adapt to new situations and learn from people who are not
robotics experts. Thus, the robot needs to be able to deal with
language input, and to link agents, objects, actions, locations
etc. with specific words used by its human collaborator in
certain situations. This is necessary for understanding verbal
instructions, such as Put the ketchup into the fridge. In other
words, language learning needs to be grounded, including
sensory-motor experience [1] in shared social spaces [2].
This also relates to work in developmental psychology
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Fig. 1. User experiment setup: A user performs an object manipulation
action and describes what they are doing. The Pepper robot observes the
scene and learns object and action labels from the observations.

emphasizing the importance of multi-sensory experience for
early word learning in infants [3] and related approaches in
robot word learning from multi-sensory channels [4].

In the present paper, we investigate word learning in
robots as a multi-modal and cross-situational learning task.
Particular emphasis is put on how to make the robot’s
learning process more transparent to the human tutor. To
do so, we make use of two strategies: (i) We implement
an extension using deictic gestures (pointing and gaze) to
an existing word learning model where the robot points at
objects to request further information regarding action and
object labels from its human tutor. (ii) We use a visualization
on the robot’s built-in tablet to provide the human with
information on the current state of the robot’s lexicon.

In an experimental setting, we let humans teach the
robot three objects and actions. We use the humanoid robot
Pepper in a table setting as shown in Fig. 1. Applying
visual perception, the current action of a human tutor is
detected by tracking the objects they are manipulating. In
addition, the human tutor is describing their current actions.
Our incremental word learning system uses statistical co-
occurrences (npmi - normalized pointwise mutual informa-
tion) of references (objects, actions) and words to learn how
each individual tutor is referring to the objects and actions.
Our approach does not require large corpora of language
data, on the contrary a handful of utterances is sufficient
to learn object and action names. It does not require a
specific grammar and can therefore be seen to some extent as
language-agnostic. The presented experiment was conducted



in German.
In robot learning, the difference between the user’s mental

model of the robot and its actual capabilities might impair
learning performance. Chao et al. [5] define transparency in
the context of robot learning as “revealing to the teacher what
is known and what is unclear” which should improve the
learning experience and reduce the workload for the teacher.
Wallkötter et al. [6] define five groups of social cues for
transparency: speech, movement, text, imagery, and other.
In the presented experiment, we used robot pointing and
head gaze (movements) to communicate known object names
and/or request the object name by pointing at objects of
interest, and we used Pepper’s tablet to display information
about the current state of the robot’s lexicon (text and
images). In a quantitative evaluation, we investigated whether
these extensions improve the overall performance of the
grounded word learning system and increase the self-efficacy
of the users. In addition, we qualitatively analyzed the human
teaching behaviors, compared teaching behaviors and robot
conditions, and examined how robot behavior influenced
the human teaching behavior and how this fitted with the
requirements of the learning system.

In Section II we discuss related works from the domains
of grounded language learning and transparency in HRI. The
model and the two proposed extensions are introduced in
Section III. We describe the setup of the user experiment
in Section IV, and evaluate results in Section V. Section
VI discusses the results and lists resulting challenges for
language learning systems and Section VII concludes the
paper.

II. RELATED WORK

In our npmi-based approach to learning word-object/action
pairings from uncluttered visual scenes and temporally co-
inciding utterances, we take up findings from developmental
psychology. In particular, we take advantage of findings
that egocentric views in both infants and adults are highly
selective [7] combined with evidence that parents often name
objects temporally coinciding with these moments when
objects are prominent in the infants’ view, and toddlers are
highly likely to learn object names from those pairings of
visual input and linguistic reference [8] using co-occurrence
statistics [9]. Multi-modal, cross-situational word learning
is a widely pursued approach in word learning for robots.
See for instance Taniguchi et al. [4] for a comprehensive
overview of different approaches, and Krenn et al. [10] for
background and description of the npmi-model realized in the
Base System described in Section III of the current paper.

The topic of transparency and explainability in HRI has
received increased attention over recent years with the goal of
increasing trust, robustness and/or efficiency [6]. Many dif-
ferent social cues are used to increase transparency. Baraka
and Veloso [11] use programmable lights on a mobile robot
to help humans understand its current state. Chao, Cakmak
and Thomaz [5] utilize active learning with non-verbal
gestures to increase transparency which increased accuracy
and efficiency. De Greef and Belpaeme [12] used social cues

(gaze and utterances) to signal learning preference in a lan-
guage game setting. They found increased performance and
better mental models of the human tutors. Deictic gestures
(e.g., pointing, gaze) have shown great potential to direct
human attention [13] [14]. In our work, we use pointing and
gaze to communicate knowledge of object labels and actively
request information from the human tutor.

Visualization on screens is a powerful tool to convey
information to the user. Ramaraj et al. [15] use visual
representation of the scene and allow the user to ask the
robot about its perception as transparency mechanisms to
improve the user’s mental model so they can identify causes
of interaction failures. Wortham, Theodorou and Bryson [16]
use visualizations to display a low-cost mobile robot’s plans
which improved the users’ mental models. Perlmutter et
al. [17] compare a screen based and a virtual reality based
visualization in a situated language understanding context.
They observed increased efficiency and accuracy of the given
commands by participants using the transparency measures.
In our work, we utilize the built-in tablet to show the current
state of a word-learning system as a transparency measure.

Teaching behavior of human tutors in HRI settings is
influenced by the robot and has been investigated by multiple
researchers [18]. Fisher, Lohan and Foth [19] found more
interactivity of human tutors when interacting with an active
embodied agent (iCub) that moved its head compared to
the same agent with only eye movements and a simulated
robot. Aliasghari et al. [20] found that splitting the robot’s
gaze between the task and the teacher can increase perceived
eagerness to learn in a video study with a simulated iCub
robot. Vollmer et al. [21] saw that adult-robot teaching
is similar to adult-infant teaching with slower and more
exaggerated movements compared to adult-adult teaching.
Lohse, Wrede and Schillingmann [22] conducted a study
in which pairs of users taught object labels to a robot.
They found that participants used longer utterances and more
motion peaks if the learning performance was bad. Kim et
al. [23] found similar results of human teachers using more
verbal guidance and feedback if the robot learner has been
struggling before in an interaction experiment with the Pleo
dinosaur robot. Pelikan and Broth [24] found that participants
simplified their utterances to adapt to the perceived limited
capabilities of a Nao robot in an interaction scenario. In our
study, we investigate how teaching behavior changes over
time depending on the interactivity of the robot and the user’s
perceived performance of the word-learning system.

III. CROSS-MODAL WORD-OBJECT AND
WORD-ACTION LEARNING ON PEPPER

For word-object and word-action learning, we use cross-
modal input and an incremental information theoretic model.
We use the humanoid Pepper robot of SoftBank Robotics
as an interactive embodied agent. It has all the necessary
components built-in such as cameras for object tracking, a
tablet for displaying information and arms for non-verbal
communication (i.e. pointing at objects). We use an addi-
tional computer that is connected to Pepper via Ethernet for
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Fig. 2. Overview of the system architecture including the two proposed
extensions.

processing the multi-modal inputs. The user wears a Blue-
tooth microphone for better input to the speech recognition
module. An overview of the whole system including the two
proposed extensions is shown in Fig. 2. Base model and
extensions are detailed below.

A. Base System (Condition 1)

The goal of the word learning system is to acquire a
lexicon of word-object and word-action mappings. A human
tutor manipulates objects on a table while describing what
they are doing. Utterance-situation pairs are detected and
used as input to the word learning system. An episode
with two utterance-situation pairs might be <I take the
box - ACTION1 OBJECT1>, <and put it next to the
can - ACTION2 OBJECT1 OBJECT2>. The situation is
inferred from the vision system which tracks the objects. We
use an 6D object pose tracker processing monoscopic RGB
images using FAST features and recorded object models
from [25]. This ensures high frame rates to follow the tutor’s
motions. However, problems of occlusions or objects leaving
the field of view cannot be avoided with the single camera
setup and can influence learning performance. The action the
user is performing can be inferred from the change of the
object position. If an object is moving, we can safely assume
it is moved by the user deliberately.

In the current setup, we focus on the three basic object
manipulation actions TAKE, PUT and PUSH. The TAKE
observation is triggered when an object is lifted from the
table plane and the PUT action when it is returned to the
table. The PUSH action is registered if an object moves on the
table plane. Actions are only registered if the movement is
above a certain small threshold to mitigate registering wrong
actions due to noise of the object tracker.

The speech of the human tutor is converted to text using
Google Cloud Speech-to-Text engine. If it coincides with a
registered action sequence it is processed as an utterance-
situation pair. We employ the algorithm described in [26]
to align these pairs. We use normalized pointwise-mutual
information (npmi) to learn word-object/action mappings.
It is a measures for the likelihood of an object/action-word
co-occurrence. The npmi value is updated after each de-

tected situation-utterance pair. Therefore, it is an incremental
learning system that does not depend on large corpora.
Additionally, it can also be seen as a language-agnostic
approach as it does not rely on a specific linguistic structure.
If an object manipulation is detected for which the involved
action and object labels have already been learned by the
system, the robot utters the observation using the learned
words (e.g., “take bottle”, “push box”). For more details on
the base system we refer to [10].

B. Pointing Extension (Condition 2)

We extend the base algorithm with an active compo-
nent of the robot requesting information by means of non-
verbal communication (i.e. pointing at objects). The passive
learning algorithm is interrupted by a pointing sequence
explained below. This approach is inspired by recent findings
of child language acquisition which we summarize in [27].
The pointing sequences have two purposes, to request new
information and to communicate if an object label has
already been learned. Pointing is initiated by Pepper making
a “Hmm?” sound to attract the attention of the human tutor.
Subsequently, Pepper directs its gaze and arm at the object
of interest. After the movements have finished, Pepper looks
at the human tutor. If Pepper has not yet learned the word, it
makes another “Hmm?” sound and waits for an utterance
of the human. The utterance is connected to the specific
object reference and its npmi value is updated. If the object
name is already in the lexicon, Pepper says the learned word
associated with the object. The utterance of the tutor is
still used to reinforce or attenuate the current believe. The
pointing sequence is completed by the robot making an “Ah!”
sound, retracting its arm and looking back at the table.

The pointing capabilities of Pepper are limited because
its fingers cannot be actuated individually which prevents
index finger pointing. Additionally, the tablet on Pepper’s
chest limits upper-arm movements. To circumvent these
shortcomings, we use the direction of the forearm with all
fingers extended to point at objects. The inverse kinematic
problem is solved by an iterative method which aligns
Pepper’s forearm direction with the direction of the object.
We use the Moore-Penrose pseudoinverse with a second term
which ensures the joints staying within a reasonable range
similar to [28] and apply gradient descent to calculate relative
joint angles. To avoid the human tutor confusing the object
being pointed at, a pointing action is only initiated if an
object is spatially separated from all other objects on the
table and all objects are currently detected by the object
tracker.

C. Tablet Extension (Condition 3)

In the second extension to the base model, Pepper’s tablet
is utilized to visualize the current state of the lexicon. An
example of the content shown on the tablet can be seen in
Fig 3. The most recent speech recognition result is shown
on top of the tablet screen. This is supposed to help the
human tutor to adjust their voice (e.g., speed, dialect) for



Fig. 3. Information shown on Pepper’s tablet for C3 (tablet extension).
The current speech recognition result is shown on top with the current state
of the lexicon below.

better speech recognition results. Additionally, it might help
to understand why the robot learned incorrect words.

On the lower part of the display, we show the current
entries in the lexicon. For each lexicon entry, a symbol is
shown with the associated word and the current npmi value
next to it. We use images of the objects as their symbols. The
actions are symbolized by arrows indicating the direction the
object is moving (i.e. lift from the table, put on the table,
move horizontally on the table). The npmi value is shown
to indicate which word has higher confidence if there are
multiple word candidates for the same reference.

The tablet view is implemented as a local web page which
is dynamically updated using JavaScript. It communicates
with the rest of the system using ROS.

IV. EXPERIMENTAL SETUP

We conducted the experiment in the library of TU Wien.
The participants sat in front of a low table with the Pepper
robot across the table observing the scene as shown in Fig. 1.
Three objects were positioned on the table. The participants
were handed a consent form and the written explanation of
their task. Additionally, a researcher explained the different
parts of the system such as the speech recognition and the
object tracker. They also gave an example of an action-
utterance pair (e.g., I take the can and put it over there.).
In the pointing extension (C2), the pointing of the robot was
demonstrated and it was verified that the participant could
identify the object pointed at. In the tablet extension (C3), a
printout of a possible state of the tablet (Fig. 3) was shown
to the participant and it was explained to them.

a) Participants: A total of 36 participants were re-
cruited at TU Wien library. We excluded 2 participants due
to technical failures during the experiment and 2 participants
due to insufficient German language skills. Therefore, 32
participants between the ages of 18 and 62 (M = 28.16,
SD = 9.27) remained in the evaluation. A total of 18
participants identified themselves as women and 14 as men.

b) Task: The task for the users consisted of teaching
the robot 6 words (3 object labels, 3 actions labels) through
object manipulation. Participants could choose the words
they would usually use to refer to the objects, and to the
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Fig. 4. Comparison between the actual and perceived performance scores
averaged over all 6 references (i.e., objects, actions)

actions (take, put, and push an object). The experiment was
conducted in German.

c) Conditions: We conducted a between-subjects study
with 10 participants in the base condition (C1), 11 in
the pointing condition (C2) and the tablet condition (C3),
respectively.

C1 Robot utters Object+Action if it observes the user
performing an action for which both labels (action and
object) have been learned (Base System)

C2 Base + Pointing at objects with “Hmm” if the object
label is unknown, or uttering the object label

C3 Base + Information on the state of lexicon shown on
tablet

d) Procedure: After the explanation of the setup and
the task, the learning process was started by announcement of
the researcher and Pepper directing its gaze towards the table.
Two researchers stayed in the room during the trial. For each
participant, videos were recorded from two perspectives for
the qualitative analysis. The learning progress is stored as log
files. The researchers stopped the word-learning experiment
after five minutes, if the participants did not stop on their
own beforehand. The participants could stop at any point on
their own. After the interaction, the participants filled in a
questionnaire.

V. EVALUATION AND RESULTS

In this Section, we present the results of the user experi-
ment. In a quantitative analysis we investigate the effects of
the different transparency measures on learning performance
and user experience. In a qualitative analysis we perform a
detailed evaluation of the teaching behaviors of the individual
participants and how they influence learning performance.

A. Quantitative Analysis

Hypotheses:

H1 Pointing extension and tablet extension improve the
learning performance of the robot

H2 Pointing extension and tablet extension improve the
perceived overall learning success, perception of control
and self-efficacy in participants

H3 Pointing extension and tablet extension increase knowl-
edge of the system’s state



a) Performance: As a performance measure, we con-
sider the amount of correct word-reference pairs in the
lexicon at the end of the experiment. A word-reference
pair is considered to be correctly learned, if the intended
word has the highest npmi value of all words for a refer-
ence and npmi > 0.1. A Kruskal-Wallis test indicated no
significant difference of this score between the conditions,
χ2(2) = 0.39, p = 0.82. (C1: M = 0.6, Mdn = 0.67), the
pointing extension (C2: M = 0.52, Mdn = 0.67) and the
tablet extension (C3: M = 0.56, Mdn = 0.50). Thus, H1 is
rejected.

b) Perceived success of learning process, perception
of control, and self-efficacy: To evaluate the participants’
confidence/accuracy in their performance, we paired the
above mentioned score with subjective measures for each
learned reference. We asked participants to rate on a 5-point
Likert scale, how well they thought the robot has learned
each word (1 = Not at all, 5 = Perfectly). The perceived
performance score was then calculated by taking the average
of the 6 scored items (Cronbach’s alpha = 0.82) and rescaled
to be in the range [0, 1]. The comparison between actual
and perceived performance is shown in Fig. 4. A Wilcoxon
Signed-Ranks test revealed no significant difference between
the actual learning and perceived learning scores between the
conditions, Z= -0.85, p = 0.39.

Additional to the per reference performance ranking from
above, we used 4 subjective items to determine the perceived
overall success of the learning process (Cronbach’s alpha =
0.79). A sample item is “The robot was able to learn the
objects I taught it.” The participant’s perceived self-efficacy
in interacting with a robot was measured by 6 items from
SE-HRI scale [29] (Cronbach’s alpha = 0.83). A sample item
is “I could get a robot to perform a specific task”. Perception
of control was measured by 2 items from [30]. A sample item
is “I felt that I had control over what the robot was learning”.
All items were rated on a 5-point Likert-scales (1 = strongly
disagree, 5 = strongly agree).

Results from a Kruskal-Wallis test indicated no significant
difference in the participants’ perceived success of learning
process, (χ2(2) = 2.20, p = 0.33) and perceived self-
efficacy among the conditions, (χ2(2) = 1.26, p = 0.53).
We also found no significant difference on participants’
perceived control among the conditions (χ2(2) = 2.31,
p = 0.32), rejecting H2. A box-plot of the self-efficacy and
perception of control can be seen in Fig. 5.

c) Knowledge of the system’s state: We used 1 sub-
jective question to determine the knowledge of the current
state of the lexicon on the same 5-point Likert scale (i.e.,
“While teaching the robot, it was clear to me which words
the robot knew already and which ones it still had to learn.”).
A Kruskal-Wallis test indicated a significant difference of
knowledge of the system’s state between the conditions
(χ2(2) = 7.37, p < 0.05), with a mean rank score of 12.45
for the base extension (C1), 14.45 the pointing extension
(C2) and 22.23 for the tablet extension (C3). This suggests
that transparency of the robot’s learning process is highest
when there is a visualization of robot’s internal state. The
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Fig. 5. Self-efficacy and perception of control per condition

difference is significant between the base and the tablet
condition, and thus H3 holds for C1 compared to C3.

Furthermore, we tested the correlation among our vari-
ables. We found positive correlation between knowledge
of the system’s state and perceived success of the overall
learning process (Spearman’s ρ = 0.35, p < 0.05) and
perceived control (Spearman’s ρ = 0.54, p < 0.01). That
implies the more transparent the robot’s learning process is,
the higher is the perception of robot’s learning success and
the perception of control in the participants. Furthermore,
the perception of control is positively correlated with the
perceived success of learning process (Spearman’s ρ = 0.57,
p < 0.01), and with self efficacy (Spearman’s ρ = 0.45,
p < 0.01). That is the more participants feel in control, the
higher their perception of self-efficacy is and the higher the
perceived robot’s learning success is.

B. Qualitative Analysis

Research Questions:

a) Do participants show different behaviors when they start
to tutor the robot?

b) Do participants change their teaching behavior over
time?

c) Is there a correlation between teaching behavior and
condition, i.e., how the robot interacts with the human?

a) Teaching Behavior: In general, participants (n=32)
showed different behaviors when teaching the robot. How-
ever, the majority of participants (n=27) started as instructed
with utterances of the following pattern: “[agent=“I”], [action
x] [object x]” (e.g., “I take the box”). Some of these
utterances also contained a location (e.g., “I put the box
on the table”), or a spatial relation and another object (“I
move the box next to the bottle”). For these participants
70.4% of all object labels and 50.6% of all action labels
were learned correctly by the system. Only five participants
showed divergent behaviors: (i) introducing objects first
(“This is a ...”) (n=1), (ii) introducing actions first (“I take, I
move” etc.) (n=1), (iii) using one noun (“box”) for referring
to two objects (can and box) (n=1), (iv) introducing one of
the three actions only in the second half of the interaction
(n=2). For the five participants with a divergent teaching
behavior, only 40% of object labels were learned correctly
and 13.3% of action labels. This might be due to the lack of
compatibility of the given input with the learning algorithm.



b) Change of Teaching Behavior: When participants
received feedback from Pepper either in form of utterances
(C1, C2, C3) or pointing gestures (C2), 14 did not change
their teaching behavior when describing the conducted ac-
tions. This group includes all three conditions and interac-
tions resulting in high and low learning scores.

Participants who changed their teaching behavior in the
course of the interaction did it in the following way:

• omitting locations and thus shortening the utterances,
e.g., “I put the bottle” (n=6 participants)

• increasing interactive behavior, such as giving verbal
feedback on what Pepper uttered (e.g., “very good”,
“no”), uttering the object name and pointing at or lifting
the object (n=5)

• omitting the subject (“I”), e.g., “push the bottle” (n=4)
• uttering object name + infinitive (n=3), e.g., “box take”
• simplifying action descriptions by omitting certain ac-

tion labels (n=1)
• changing to a very repetitive behavior over time, repeat-

ing object and action labels on their own, e.g., “crisps
[pause] crisps [pause] crisps” (n=1)

• using passive voice and descriptions of situations, such
as “the can is moved forward”, or “the bottle is next to
the box” (n=1)

As reflected in these items, most of the participants for
whom the learning process did not go well tried to simplify
their utterances over time. However, the analysis shows that
the end results in experiments where participants changed
their teaching behavior (learned object labels: 66.6%, learned
action labels: 46.3%) are very similar to those in experiments
where participants did not change their teaching behavior
(learned object labels: 64.3%, learned action labels: 45.2%).
This reflects that for some participants the results improved
after adapting the teaching process. However, others sim-
plified their utterances in a way that did not contain all
information necessary for our learning system and thus
negatively affected word learning. Also, the simplifications
bore the risk that the granularity of the described actions
did not match the granularity in which the system was able
to perceive the actions any more (e.g., “I put the box on
the table” versus “I take the box and put it on the table”
describing the same action). This resulted that on average
the learning success was very similar to the group that did
not adapt the teaching behavior.

Some participants, for whom learning went well, checked
whether Pepper learned everything correctly by the end of
the experiment. They manipulated objects without verbally
describing their actions but listened if it was correct what
Pepper uttered. One participant used more complex utter-
ances by adding spatial relations and other objects, after
Pepper had learned all the labels correctly.

c) Differences Between the 3 Conditions: With regards
to the change of behavior between the different conditions,
very few participants changed their behavior in C1 (base
system) and the most in C2 (pointing extension). This might
be related to the increase of interactive behavior of Pepper
in C2. The replies by the 11 participants in C2 given to

the 43 pointing actions of Pepper diverged from the other
utterances. Participants (i) uttered a correct object label, such
as “tea box”, sometimes preceded by “this is a...” (n=11),
(ii) uttered verbal feedback - only on correctly learned
object labels - such as “yes”, “very good” or “correct”
(n=3), or (iii) manipulated that object accompanied by a
task description (n=1), or (iv) did not reply at all (n=3).
When Pepper started pointing in C2, participants reacted to
Pepper’s utterances also in diverging ways, even if it was
not pointing: participants (i) uttered “yes”, “no” or “bravo”
etc., partially including nods (n=5), (ii) corrected Pepper’s
utterances (n=3), and (iii) pointed at objects or lifted them
and uttered their name or “This is a ...” (n=2). On the other
hand, participants in C3 (tablet extension) did not provide
any feedback of that kind and only 2 participants in C1
nodded, when Pepper uttered words correctly. Thus, the
type and amount of feedback participants gave to robot’s
utterances and actions was a conspicuous difference between
the three conditions.

Participants in all three conditions mixed up words or used
different words to refer to the same action or object, between
and within participants. For example, 3 to 12 different nouns
were used per participant to refer to the three objects (on av-
erage 4.2 nouns per participant; Mdn:3). There was a higher
variation in object names in C2 (on average 5.1 nouns per
participant; Mdn:3). However, it did not affect the learning,
as especially for the participants who varied a lot learning
worked well. This shows that our learning system was able
to deal with this variation, which is a positive affect of
cross-situational and cross-modal language learning systems
in general. For learned action labels, the learning scores of
the three conditions are comparable: C1: 46.7%, C2: 45.5%,
C3: 45.5%. However, there is a difference in the percentage
of correctly learned object labels: C1: 73.3%, C2: 57.6%,
C3: 66.7%. The reason why the learning scores for C2 are
worse might be due to the increase of interactive behavior.
Participants provided feedback and utterances other than
describing the conducted action, which is not compatible
with the learning algorithm.

Although on average word learning did not work better
in C3 than in the other two conditions, of the 4 participants
who were able to teach all words, 3 were in C3 and 1 in C1.
Therefore, we assume that if word learning worked well and
the shown teaching behavior provided suitable input for the
learning system, the tablet supported participants to focus
on words which were not yet learned correctly. However,
if the teaching behavior did not suit the learning algorithm,
no information was provided on how the teaching behavior
should be adapted and therefore the experiment was not
successful despite the additional information given to the
participants.

Robotic factors, such as object tracking performance
(wrong or no actions detected) or performance of speech
recognition (wrong or no words detected) also impaired
learning performance on an individual level. However, there
was no correlation between tracking/speech recognition per-
formance and the performance of the word-learning system.



We hypothesize that the reason for this is the relatively
low amount of data required to teach our system. In the
four experiments where all labels were learned correctly,
only 17-36 (Mdn: 20.5) utterances were needed. As long as
sufficient examples are recognized from which the system is
able to learn, it does not negatively influence learning success
if actions are not detected (e.g., due to occlusions). Addi-
tionally, these robotic factors will always be prevalent. This
emphasizes the importance of designing language learning
systems being able to deal with wrong or missing input.

VI. DISCUSSION

In the quantitative analysis, we investigated the influence
of transparency on user experience and performance. We
found that transparency (knowledge about the system’s state)
correlates positively with the users’ perception of control and
perceived learning success. Additionally, perception of con-
trol and perceived learning success were positively correlated
with self-efficacy. All of these factors are important to keep a
user motivated and interested to interact with a system over a
longer time horizon [29]. In our setup, displaying information
on the tablet was most beneficial to increase transparency.
Most effects were not significant due to the small sample
size, but there was a tendency of increased self-efficacy for
both extensions (Base Mdn = 3.25, Pointing Mdn = 3.5,
Tablet Mdn = 3.67) and increased perception of control
(Base Mdn = 3, Pointing Mdn = 3.5, Tablet Mdn = 3.5).
However, we did not see an actual performance increase for
the extensions.

In the qualitative analysis we looked at the different
factors that influence performance and need to be addressed
by future word-learning systems. We investigated which
kind of teaching behavior participants show, in order to
develop mechanisms which enable the learning system to
consider relevant information. In addition, we investigated
whether different behaviors of the robot, such as providing
information on its current learning status via (i) utterances,
(ii) combined with deictic gestures, or (iii) combined with a
tablet, influence the teaching behavior of the human.

Based on the observed behaviors, we identified the fol-
lowing challenges for language learning systems:

User try to facilitate learning of the robot. The approach
used by the majority of participants was to simplify their
utterances, e.g., by omitting locations or subjects (“I”), by
uttering object name + infinitive. While Lohse, Wrede and
Schillingmann [22] and Kim et al. [23] found that partici-
pants used longer utterances if learning did not work well
for the robot, our observations are in line with Pelikan and
Broth [24] where participants simplified their utterances to
adapt to the perceived limited capabilities of the robot. Some
users also changed the granularity of their verbal descriptions
by uttering only action or object labels, when learning did
not go well. However, the actions perceived by the system
(take, put, push) need to be of the same granularity as the
actions described by the utterances of the human tutor, i.e.,
there needs to be one word for one action. In our user
study, the granularity of descriptions varied between and

within participants. Therefore, the system needs to be able
to combine the perceived actions flexibly (e.g., “put” with
and without a preceding “take” action). Also, new actions
were added spontaneously by participants. All this requires
a robust language learning system.

Labels for a specific object or action varied between
and within participants, participants sometimes mixed up
words or used pronouns instead of object names. Therefore,
mechanisms for coreference resolution are required, and the
learning algorithm needs to be robust enough to deal with
lexical variety and to “forget”, if words are confused by the
human or wrongly recognized by the system.

The type of interactivity influences the behaviors of users.
Depending on the communicative cues given by the robot, the
interactive behavior of users might increase, e.g., in addition
to replies to deictic gestures from the robot. However, the
system then needs to be able to deal with these different
types of input, such as feedback on the system’s learning
behavior (e.g., “very good” or “correct”). To deal with this
type of input, inspirations can be derived from studies on
developmental language learning, where children receive
verbal feedback from their care-takers and individual objects
are visually prominent [3], [7].

Even if incorporating more interactive robot behavior
bears the risk that the input given by humans can not be
fully dealt with by the learning algorithm, it still makes sense
to include this type of interaction. We saw a tendency that
participants in the interactive condition C2 perceived higher
learning success, self-efficacy and perception of control (see
Fig. 4 and Fig. 5) but it would require a larger sample
size to get a definitive result. The observed tendency is in
line with similar research that showed people ascribing more
competence to a more active robot [19].

Utilizing a visualization (e.g., Pepper’s tablet) as a trans-
parency mechanism to visualize the current state of the
lexicon to the tutor has potential to support human tutors
in their teaching process, only if their teaching behavior
provides suitable input for the learning system. It does
not automatically support them in adapting their teaching
behavior. Future research is needed to investigate in how far
the visualization can be used to provide feedback to humans
on how to adapt their teaching behavior in order to increase
learning success.

VII. CONCLUSION

In this paper, we investigated two extensions for a
grounded object and action word-learning system with the
aim of increasing transparency. For the first extension we
implemented deictic gestures (pointing and gaze) to commu-
nicate known/unknown object names and actively request the
object name from the user. The second extension we added
a visualization of the current state of the learned lexicon
(object and action names) on the robot’s display. In a user-
study (n=32) with the Pepper robot we found benefits of
both extensions and identified challenges for future word-
learning systems. The tablet was perceived as most helpful to
communicate the current state of the word-learning system.



The deictic gestures increased interactivity of the users.
We saw that human tutors in all conditions simplified their
utterances over time to adapt to the perceived capabilities of
the robot.
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